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Abstract—The link adaptation plays a crucial role in the fifth
generation (5G) and future wireless networks, where adaptive
modulation and coding (AMC) is vital for significantly increasing
the data transmission rate and quality of service (QoS) by
adjusting the modulation and coding scheme (MCS). In this
work, we investigate the stochastic geometry-based MCS adaption
for the uplink cellular networks with Poisson distributed base
stations (BS) and user equipments (UE). We first define the
conditional received rate by quantizing the channel quality, i.e.,
signal to interference ratio (SIR), using the sets of thresholds.
Basically, higher SIR indicates better channel condition and
applys higher order of modulation scheme, which leads to higher
received rate. We then derive the framework of meta distribution
on the conditional received rate, the spatially-average spectral
efficiency (SE), and the variance of the SE. In addition, beta
approximation and several bounds are presented to simplify
the calculation of meta distribution. We validate the proposed
framework by numerical simulations under different system
parameters.

I. INTRODUCTION

The fifth generation (5G) and beyond wireless networks are
designed to support wider range of services, from ultra-reliable
Internet of Things (IoT) applications to high-bandwidth
multimedia services [1]. Such networks will deliver high
reliability, extensive connectivity, and low latency while
managing limited resources and transmission power. A key
strategy in meeting these demands is adaptive modulation
and coding (AMC), which dynamically adjusts modulation
and coding schemes (MCS) based on the channel conditions,
thereby significantly enhancing data transmission rates and
quality of service (QoS) [2].

Traditionally, AMC issues have been extensively studied
in the cases of a single cell or a finite number of cells
[3], with MCS decisions based on the Shannon channel
capacity in narrow-band fading channels. Recent developments
in MCS have integrated technologies like massive multiple-
input multiple-output (MIMO) and non-orthogonal multiple
access (NOMA) [4] for emerging requirements. Concurrently,
methodologies like machine learning algorithms have been
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extensively studied to enhance link adaption [5] and MCS
prediction [6]. However, these methodologies often assume a
fixed set of transmitters and receivers and do not account for
the stochastic nature of their distributions. This randomness
leads to significant variability in interference originating from
stochastic locations of nodes.

Additionally, spatial stochastic modeling of wireless net-
works for performance analysis has become a topic of
interest [7]. Stochastic geometry (SG) provides a mathematical
framework to analyze the performance of large-scale wireless
networks by capturing the inherent randomness in the wireless
communication, including fading, shadowing and node distri-
bution, etc [7], [8]. SG also shows its potential in evaluating the
performance of wireless networks in different scenarios, e.g.,
millimeter Wave (mmWave) and Terahertz (THz) communica-
tion [7], cell-free massive MIMO networks [9], reconfigurable
intelligent surface (RIS)-assisted networks [10], etc.

Despite fruitful studies focusing on modeling the new
features in wireless networks, few references explore the
integration of MCS adaptation, which is beyond the signal
to interference plus noise ratio (SINR) or coverage analysis.
In [8], an analytical framework is presented to assess service
block probability in the downlink networks, where the services
are classified according to MCS adaptation. Similarly, [11]
analyzes the spectral efficiency (SE) and binary rate (BR) in
uplink networks with interference-aware muting, based on
MCS from the long-term evolution (LTE) standard. However,
these studies predominantly focus on the average user perfor-
mance in the whole network, potentially overlooking detailed
insights into individual user experiences, such as the variation
experienced by a single user. To address this limitation, we
adopt the meta distribution [12], [13], which facilitates a
fine-grain analysis of performance metrics by incorporating
higher-order moments of the conditional received rate.

In this paper, we investigate the impact of MCS in the uplink
networks with Poisson distributed base stations (BS) and user
equipments (UE). The conditional received rate is defined by
quantizing the quality of the received signal, i.e., signal to
interference ratio (SIR), using predefined thresholds. A higher
SIR enables a higher-order modulation scheme, increasing the
data rate. The main contributions are as follows:

• SG-based MCS modeling in the uplink. This work



presents a detailed framework combining MCS and SG
for uplink modeling. We introduce the meta distribution
to provide a more comprehensive network performance
analysis, offering insights into conditional received rates,
spatially-average SE, and their variance under AMC
schemes.

• Practical considerations in uplink modeling. Various
practical aspects are considered, including uplink power
control [7] and the approximated modeling of interfering
UEs [14]. We analyze the system performance across
different parameter settings, such as power control
coefficients and UE activity factors, further demonstrating
their impact on the performance evaluation.

The rest of the paper is organized as follows. Section II
presents the system model and the assumptions. The main
performance analysis is established in Section III. Section IV
provides the simulation results, and conclusions are drawn in
Section V.

II. SYSTEM MODEL

A. Network Topology

A single-tier uplink cellular network is considered whose
BSs lie in R2 following an independent and homogeneous
Poisson point process (PPP) ΦBS, with intensity λBS. The
UE are spatially distributed following homogeneous PPP ΦUE
with intensity λUE. Here in the current paper, we assume that
UE density is much higher than BS density, i.e., λUE >> λBS,
such that each BS has at least one UE associated with it in
one resource block. Moreover, each UE is associated with its
closest BS, thereby forming a Voronoi cell tessellation [7]. The
selected UE point process is modeled as Φu ≜ {U(V (y))|y ∈
ΦBS}, where V (y) denotes the Voronoi cell of the BS y ∈ ΦBS,
and U(V (y)) denotes an arbitrary point chosen within V (y).
The typical BS is located at the origin for the simplicity of
analysis, with its associated UE located at x0. We denote the
interfering UE point process as ΦI, given by ΦI = Φu \ {x0}.

B. Signal-to-Interference Ratio

In an interference-limited scenario, we focus on the three
types of distances between BSs and UEs. The distance between
typical BS at the origin o, i.e., BSo, and its associated UE
x0 ∈ Φu is denoted as R. The distance between typical BSo

and the interfering UE x ∈ ΦI is denoted by Dx. Additionally,
we denote the distance between the interfering UE x ∈ ΦI

and its associated BS as Rx. We assume that the BS and each
UE are equipped with a single antenna.

To partially compensate for path loss, we introduce the
fractional power control (FPC) scheme [12] at each UE x ∈
Φu, given by Px = p0R

ηϵ
x , where ϵ ∈ [0, 1] is the power

control coefficient, and η stands for the path loss exponent.
For example, the FPC at UE x0 is Px0

= p0R
ηϵ. Note that

when ϵ = 0, no power control is applied at the UE, and when

ϵ = 1 corresponds to full path-loss inversion power control.
Thus, the received SIR γ experienced at the typical BS is

γ =
Px0

Hx0
R−η∑

x∈ΦI
PxβxHxD

−η
x

, (1)

where Hx and Hx0 are the channel gains between the typical
BS and the interfering UE at position x and its associated
UE at position x0, respectively, which are assumed to be
exponentially distributed. βx represents the activity factor of
the UE located at x, which follows Bernoulli distribution with
parameter q. Note that βx can be seen as the probability that
one UE is active or the fraction of active interfering UEs due
to the independent activation from each UE.

C. Link Distance Distributions on R and Rx

In uplink cellular networks, the interfering UEs, i.e., ΦI,
form a non-stationary process, due to the Poisson-Voronoi
tessellation among cells [14]. Therefore, as in [12], we approxi-
mate the interference distribution ΦI at BSo as inhomogeneous
PPP, with intensity function as following

λI(x) = λBS(1− e−B2λBSπD
2
x), (2)

the probability density function (PDF) of the distance R
between BSo and UE x0, fR(r), is given by

fR(r) = 2B1πλBSre
−2B1λBSπr

2

, r ≥ 0, (3)

where B1 = 5
4 , B2 = 12

5 .
The distribution of the distance Rx follows the same

statistical law as R since all cells are assumed to be statistically
homogeneous. However, Rx is constrained by the distance Dx

(i.e., Rx ≤ Dx). Therefore, the distribution of Rx, conditioned
on Dx, is described as the truncated Rayleigh distribution [12]

fRx
(r|Dx) =

2B1πλre
−B1λπr

2

1− e−B1λπD2
x

, 0 ≤ r ≤ Dx. (4)

The conditional distribution in (4) reflects the statistical
dependency imposed by the spatial structure of the network
and ensures that Rx remains within the distance Dx.

Remark 1: It should be noted that Dx does not necessarily
have to be greater than R. But Dx must be no less than Rx.
It indicates that an interfering UE x from a neighboring cell
can be much closer to BSo than the UE xo. The latter is due
to the smallest distance association between selected UE and
receiving BS.

D. MCS Adaption

In cellular networks, traffic is scheduled using multiple
MCSs, where each MCS is associated with a specific SIR
threshold [15]. The SIR depends on the UE location and fading,
making the received rate at a typical BS location-dependent. In
the uplink network, AMC works by UEs transmitting sounding
reference signals for BSs to estimate SIR. Based on these
estimations, BSs select the MCS, which is linked to a channel
quality indicator (CQI), thus optimizing SE while maintaining



the block error rate (BLER). Actually, incorporating multiple
MCSs in scheduling can significantly improve SE.

We conceptualize the MCS as follows: The condition of
the channel is categorized into M distinct, non-overlapping
intervals. Each interval corresponds to a specific state linked
to an MCS strategy. We define Θ = {θ1, θ2, . . . , θM} as a
set of SIR thresholds, where θ1 < · · ·< θM and θi ∈ R+.
These thresholds segment the continuous SIR into M + 1
discrete zones, denoted as iCQI ∈ {0, 1, 2, . . . ,M}. Here, a
channel state iCQI is considered better to jCQI for all i > j,
and ∩M

iCQI=0
[θiCQI , θiCQI+1 ] = ∅, where we set θ0 = −∞ and

θM+1 = +∞ as a complement. Consequently, the proportion
of SIR that falls within the iCQI-th region equals the probability
P(θiCQI < γ < θiCQI+1). For a typical link, we define the
received rate for each MCS region by the corresponding SIR

RMCS(γ) = riCQI1(θiCQI ≤ γ < θiCQI+1
), (5)

where 1(.) denotes the indicator function, riCQI is the rate
corresponding to the SIR level and indexed by iCQI. Note that
r1 < r2 < · · · < rM and r0 = 0. This setup reflects the fact
that higher SIR values allow for the use of higher-order MCS,
thus leading to higher received rates.

III. PERFORMANCE ANALYSIS

In this section, we analyze uplink cellular network perfor-
mance by first presenting the expression of the conditional
received rate, followed by the analysis of its meta distribution
including the exact expression, beta approximation and classi-
cal bounds. Finally, we discuss the spatially-average SE of
the network and the variance of the SE.

A. Conditional Received Rate

For a given UE x0 associated with the BSo, and given a
realization of Φu and ΦBS, the expectation of the conditional
received rate with MCS is denoted as

r(ΦBS,Φu) = E
[
RMCS(γ)

∣∣ΦBS,Φu

]
= E

[
riCQI1(θiCQI ≤ γ < θiCQI+1

)|ΦBS,Φu

]
. (6)

By calculating the expectation over the channel fading and
the activity factor of interfering UEs, we can further simplify
the expression of the conditional received rate.

Lemma 1 (Conditional received rate): The conditional
received rate experienced by the typical BS is

r(ΦBS,Φu) =

M∑
m=1

∆rm
∏
x∈ΦI

f(θm), (7)

where ∆rm=rm−rm−1 and f(θm)=
q

1+θmRη(1−ϵ)Rηϵ
x D−η

x
+1−q.

Proof 1: See Appendix A.
Lemma 1 presents the conditional data rate from a given

UE, conditioned on a specific realization of the network. It
captures the randomness of BS locations, UE locations, and
channel fading on the received data rate.

B. Meta Distribution
The meta distribution characterizes user-specific behavior

across different spatial realizations of the network, providing
information on the fraction of UEs that achieve a rate above
a given threshold.

Definition 1 (Meta distribution of conditional received rate):
Given the SIR thresholds Θ for the MCS region and the data
rate threshold ξ, the meta distribution of conditional received
rate is defined as:

F̄ (Θ, ξ) = P (r(ΦBS,Φu) > ξ) , (8)

where Θ = {θ1, . . . , θM} is the set of SIR thresholds as
detailed in Section II-D, and ξ ∈ R+.

For example, if F̄ = 0.9 and ξ = 2 Gbps, the probability
that the conditional received rate exceeds 2 Gbps is 90%, i.e.,
90% of the typical links can achieve the data rate above 2
Gbps.

1) Moments: According to the definition in [12], the b-th
moment of the conditional received rate is given by

Mb = E
[
r(ΦBS,Φu)

b
]

= E

( M∑
m=1

∆rm
∏
x∈ΦI

f (θm)

)b
 , (9)

where b ∈ N+.
Theorem 1 (General cases for moments): The b-th moment

of the conditional received rate is given by

Mb=
∑

n1,n2··· ,nM≥0
n1+n2+···+nM=b

b!

n1!n2! · · ·nM !
(

M∏
m=1

∆rnm
m )g(θm),

(10)

where

g(θm)=

∫ ∞

0

e−z(1+
∫∞
0

f(x,z,θm)dx)dz, (11)

and

f(x, z, θm) =

∫ x

0

ze−zy
(
1−e

B2
B1

zx
)

B1 (1−e−zx)(
1−

M∏
m=1

(
1− qθm

θm + y−
ηϵ
2 x

η
2

)nm
)
dy.

(12)

Proof 2: See Appendix B.
Definition 2 (SE): The SE of the typical link based on the

received SIR γ is defined as follows [11]

SEMCS =

M∑
iCQI=0

SEiCQI1
(
γ ∈

[
θiCQI , θiCQI+1

))
, (13)

where SEiCQI represents the SE corresponding to the MCS
region indexed by iCQI.
Under our system settings, the spatially-average SE is exactly
the first moment M1 normalized by bandwidth. The variance
of SE is given by M2−M2

1 , where Mb is given in Theorem 1.



Lemma 2 (Spatially-average SE): The spatially-average of
SE is given by

SE(Θ)=E[SEMCS]=

M∑
m=1

∆sm

∫ ∞

0

e−z(1+
∫∞
0

f(x,z,θm)dx)dz.

(14)

where ∆sm = SEm − SEm−1 and

f(x, z, θm) =

∫ x

0

ze−zy
(
1−e−

B2
B1

zx
)
qθm

B1 (1−e−zx)
(
θm+y−

ηϵ
2 x

η
2

)dy. (15)

Lemma 3 (Variance of SE): The variance of SE is given by

Var[SEMCS] =

M∑
m=1

M∑
n=1

∆sm ·∆sn∫ ∞

0

e−z(1+
∫∞
0

f1(x,z,θm,θn)dx)dz−SE(Θ)2, (16)

where ∆sm = SEm − SEm−1, SE(Θ) follows from Lemma
2 and

f1(x,z,θm,θn)=

∫ x

0

ze−zy
(
1−e−

B2
B1

zx
)

B1 (1−e−zx)

(
qθm

θm+x
η
2 y−

ηϵ
2

+
qθn

θn+x
η
2 y−

ηϵ
2

− q2θmθn(
θm+x

η
2 y−

ηϵ
2

) (
θn+x

η
2 y−

ηϵ
2

))dy. (17)

Lemma 2 presents the spatially-average SE, which is the
summation of the functions related to the m-th CQI region;
Lemma 3 highlights SE fluctuations between links, with higher
variance indicating greater disparity and reduced UE fairness.

Corollary 1 (Equally partition): When M = 2, i.e., the SIR
region is equally divided into two, we have ∆f = ∆r2 = ∆r1
and

Mb = ∆f b
∞∑
k=0

Γ(b+ 1)

Γ(k + 1)Γ(b− k + 1)
g(θ1, θ2), (18)

where

g(θ1, θ2) =

∫ ∞

0

e−z(1+
∫∞
0

f(x,z,θ1,θ2)dx)dz, (19)

and

f(x, z, θ1, θ2) =

∫ x

0

ze−zy
(
1−e−

B2
B1

zx
)

B1 (1−e−zx)
(1−(

1− qθ1

θ1 +y−
ηϵ
2 x

η
2

)k (
1− qθ2

θ2 +y−
ηϵ
2 x

η
2

)b−k
)
dy. (20)

2) Exact Expression of Meta Distribution: Using the Gil-
Pelaez inversion theorem [12], an exact integral expression of
meta distribution can be obtained from the purely imaginary
moments φ(iw), where i ≜

√
−1.

Theorem 2 (Exact expression): The meta distribution of the

conditional received rate is given by

F̄ (Θ, ξ) =
1

2
+

1

π

∫ ∞

0

1

w
Im
{
u−iwφ (iw)

}
dw, (21)

where φ(iw) = Miw and Miw are defined in (9), and Im{·}
represents the imaginary part of a complex number.

3) Beta Approximation: The calculation of the exact
integral expression for meta distribution takes a long time
to converge. This is because the

(
iw
k

)
is subject to oscillatory

convergence, which converges more slowly as w increases. Given
that r̃(ΦBS,Φu) =

r(ΦBS,Φu)
rM

is supported on [0,1], a natural choice
for a simple approximation is the beta distribution [12]. The PDF
of the beta distribution is f(x;α, β) = 1

B(α,β)
xα−1(1 − x)β−1,

where beta function B(α, β) = Γ(α)Γ(β)
Γ(α+β)

, and α and β are shape
parameters. The expectation and variance of beta distributed random
variable X are as follows, respectively

µ = E[X] =
α

α+ β
, (22)

Var[X]=E[X − µ]2=
αβ

(α+β)2(α+β+1)
. (23)

Hence, we can approximate the meta distribution in (21) by fitting
M1(M1 = µ) and M2

(
M2 = Var [X] +M2

1

)
into the correspond-

ing moments of beta distribution. Then the shape parameters α and
β can be written as

β =
(1−M1)(M1 −M2)

M2 −M2
1

, (24)

α =
βM1

1−M1
=

M1(M1 −M2)

M2 −M2
1

. (25)

With the help of beta approximation, we are able to approximate
the distribution of r̃(ΦBS,Φu) and r(ΦBS,Φu).

4) Classical Bounds: The lower and upper boundary of meta
distribution can be obtained by applying Markov and Chebyshev
bounds as in [12]. Noting that for ξ > rM , we have F̄ (Θ, ξ) = 0,
our discussion is focused on the region ξ ∈ [0, rM ]. For b > 0, the
Markov bounds for meta distribution of r (ΦBS,Φu) are

1−
E
[
(rM − r (ΦBS,Φu))

b
]

(rM − ξ)b
< F̄ (Θ, ξ)≤Mb

ξb
. (26)

Unlike the Markov inequality, the Chebyshev inequality accounts
for the variance of the random variable. Since we have ξ ∈ [0, rM ]
and M1 ∈ [0, rM ], the relationship between ξ and M1 must be
analyzed case by case. The Chebyshev bounds are given as follows.
For ξ < M1,

F̄ (Θ, ξ) > 1− V

(ξ −M1)2
, ∀ξ < M1, (27)

while for ξ > M1,

F̄ (Θ, ξ) ≤ V

(ξ −M1)2
, ∀ξ ≥ M1, (28)

where V ≜ Var [r(ΦBS,Φu)] = M2 −M2
1 .

IV. NUMERICAL RESULTS

In this section, we validate the SE, beta approximation, as well as
the bounds mentioned in Section III by Monte-Carlo simulations. The
impact of system parameters, e.g., activity factor q, power control
coefficient ϵ, is further analyzed. In the simulation settings, we
consider BS density λBS = 0.25, path loss exponent η = 4.
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Fig. 3. The analytical bounds and simulation results
on meta distribution.

Fig. 1 illustrates the results from Theorem 2, showing the
performance of UE-BS links under various normalized data rate
thresholds ξ and UE activity factors q, based on the scenario
outlined in Corollary 1. Here, the SIR region is divided equally
with parameters ∆f = 0.5, θ1 = 0 dB, and θ2 = 5 dB. Each
UE’s power control coefficient is set at ϵ = 0.5. For instance,
at ξ = 0.4 and q = 1, 60% of links achieve the threshold,
indicating the proportion of UE-BS links that meet or exceed ξ.
The beta distribution accurately approximates the meta distribution
of the received rate, with simulations aligning well with analytical
predictions. Additionally, with a constant UE activity factor q, the
meta distribution declines as ξ increases, indicating that fewer
links surpass higher rate thresholds. Furthermore, an increase in q,
corresponding to more active interfering UEs, reduces the likelihood
that the typical link’s received rate will exceed ξ, due to heightened
interference.

Fig. 2 illustrates the spatially-average SE (left axis) in Lemma 2
and the variance of SE (right axis) in Lemma 3 versus activity factor
q under various power control coefficients ϵ. The SIR threshold and
SE values are taken from the link simulator as detailed in [11]. We
observe that the spatially-average SE decreases with the increase
of q when ϵ is fixed. This is due to the increase in the number of
interferers, which deteriorates the SIR and consequently lowers the
SE. Taking both the spatially-average SE and the variance of SE
into consideration, we conclude that the variance of SE decreases
dramatically with the help of FPC, while the spatially-average SE
has only slightly decreased.

Fig. 3 presents the classical bounds for the meta distribution,
comparing the simulation results, Chebyshev bounds, Markov bounds,
and the best Markov bounds across different values of the moment
parameter b ranging from 1 to 4. The graph indicates that Markov
bounds (dashed red lines) generally offer tighter estimates than
Chebyshev bounds (dashed green lines), especially for higher b
values. For the lower bounds, as ξ decreases, Markov bounds with
larger b become closer to the simulation values, while for the upper
bounds, larger b values provide tighter bounds at higher ξ. Overall,
these bounds offer a quick way to assess network performance.

V. CONCLUSION

In this paper, we presented a framework for analyzing the impact
of MCS in uplink cellular networks. Considering Poisson distributed
BSs and UEs, we defined the conditional received rate by quantizing
the channel quality and applying the matching modulation scheme.
Using SG, we derived the meta distribution of the conditional received

rate, spatially-average SE and the variance of the SE. Additionally, we
applied the beta approximation and several classical bounds for faster
calculation of the meta distribution. The numerical results validated
the above analytical results under different system parameters.

APPENDIX

A. Proof of Lemma 1
Given the received rate at each MCS region, the conditional

received rate of the typical link is

r(ΦBS,Φu)=E[RMCS(r)|ΦBS,Φu]
(a)
=

M∑
m=0

rmP(θm<γ < θm+1)

(b)
=

M∑
m=1

∆rmP

(
Hx0R

η(ϵ−1)∑
x∈ΦI

βxHxR
ηϵ
x D

−η
x

>θm|ΦBS,Φu

)
, (29)

where (a) follows from (5), (b) follows from (1) and the FPC. Given
that Hx∼exp (1) and βx∼B(1, q), part of the (29) can by simplified
as

P

(
Hx0R

η(ϵ−1)∑
x∈ΦI

βxHxR
ηϵ
x D−η

x

> θm|ΦBS,Φu

)

=EHx,βx

 ∏
x∈ΦI

e−θmRη(1−ϵ)βxHxRηϵ
x D−η

x

∣∣∣∣ΦBS,Φu


=
∏
x∈ΦI

(
q

1 + θmRη(1−ϵ)Rηϵ
x D−η

x

+ 1− q

)
. (30)

Thus, the proof is complete.

B. Proof of Theorem 1
Considering the definition of moments, we give the b-th moments

of the conditional received rate as follows

Mb = E[r(ΦBS,Φu)
b]

(a)
= E[

 M∑
m=1

∆rm
∏
x∈ΦI

f (θm)

b

]

(b)
=
∑

C1,C2

A

(
M∏

m=1

∆rnm
m

)
E

 ∏
x∈ΦI

M∏
m=1

f (θm)
nm

 , (31)

where (a) is obtained by (7) where A = b!
n1!n2!···nM !

and



f(θm)= q

1+θmRη(1−ϵ)R
ηϵ
x D

−η
x

+1−q, (b) follows from multi-nominal
series and the moment generation function of r(ΦBS,Φu) with
C1 : n1, n2,· · · ,nM ≥ 0 and C2 : n1 + n2 + · · ·+ nM = b.
We notice that R, Rx and Dx are random variables. Let T1 =

E
[∏

x∈ΦI

∏M
m=1 f (θm)nm

]
, we have

T1 = ER,Rx,Dx

 ∏
x∈ΦI

M∏
m=1

(1− qθm

θm +Rη(ϵ−1)Dη
xR

−ηϵ
x

)nm

 . (32)

According to the distribution of Rx in (4), we furter have

T1=ER,Dx

 ∏
x∈ΦI

fRx(x,Dx)

M∏
m=1

(
1− qθm

θm+Rη(ϵ−1)Dη
xx−ηϵ

)nm

 ,

(33)

where fRx(x,Dx)=
2B1πλxe−B1λπx2

1−e−B1λπD2
x

. Further, following from the
probability generating functional (PGFL) of PPP, we have

T1 = ER

[
exp

(
−2π

∫ ∞

0

(
1−
∫ a

0

fRx (x, a)×
M∏

m=1(
1− qθm

θm +Rη(ϵ−1)aηx−ηϵ

)nm

dx

)
aλ
(
1−e−B2λπa2

)
da

)]
. (34)

Nextly, we calculate the expected value of the random variable R
and perform several simplifications as follows,

ER

[
exp

(
−2π

∫ ∞

0

(
1−

∫ a

0

fRx (x, a)

M∏
m=1

(1−

qθm
θm +Rη(ϵ−1)aηx−ηϵ

)nm

dx

)
aλ
(
1−e−B2λπa2

)
da

)]
=

∫ ∞

0

2B1λπre
−B1λπr2exp

(∫ ∞

0

−2πaλ
(
1−e−B2λπa2

)
(
1−
∫ a

0

fRx (x, a)

M∏
m=1

(
1− qθm

θm+ rη(ϵ−1)aηx−ηϵ

)nm

dx

)
da

)
dr

(a)
=

∫ ∞

0

2B1λπre
−B1λπr2 exp

(∫ ∞

0

−2πλr2v
(
1−e−B2λπv2r2

)
(
1−
∫ v

0

fRx (u, v)

M∏
m=1

(
1− qθm

θm + vηu−ηϵ

)nm

du

)
dv

)
dr

(b)
=

∫ ∞

0

e−z exp

(∫ ∞

0

− z

B1

(
1− e

−B2
B1

zv

)
(1−∫ v

0

ze−zu

1−e−zv

M∏
m=1

(
1− qθm

θm+ v
η
2u− ηϵ

2

)nm

du

)
dv

)
dz

(c)
=

∫ ∞

0

exp

−z

1 +

∫ ∞

0

∫ x

0

(
1− e

−B2
B1

zx

)
ze−zy

B1 (1−e−zx)

(
1−

M∏
m=1

(
1− qθm

θm+ x
η
2y− ηϵ

2

)nm
))

dydx)

)
dz, (35)

where f(x, z) =
∫ x

0

(
1−e

−B2
B1

zx
)
ze−zyh(x,y)

B1(1−e−zx)
dy and h(x, y) =(

1−
∏M

m=1(1−
qθm

θm+x
η
2 y

− ηϵ
2
)nm

)
. (a) follows the distribution of

R, u = x/r and v = a/r, (b) is obtained by v = v2, u = u2 and
z = B1λπr

2, (c) is derived from x = v, y = u and 1 =
∫ x

0
ze−zy

1−e−zx .
The proof is complete.
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